Sains Malaysiana 53(2)(2024): 359-367

http://doi.org/10.17576/jsm-2024-5302-10

 

A New Oxoaporphine and Liriodenine's Anti-Neuroblastoma Potential from the Roots of Polyalthia bullata King

(Sebatian Oksoaporfina Baharu dan Potensi Anti-Neuroblastoma Liriodenin daripada Akar Polyalthia bullata King)

 

PHOEBE SUSSANA PRIMUS1, CAROL HSIN-YI WU2, CHAI-LIN KAO3 & YEUN-MUN CHOO1,*

 

1Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2Division of Cellular and Immune Therapy, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan

3Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Taiwan

 

Received: 4 July 2023/Accepted: 24 January 2024

 

Abstract

Polyalthia bullata King’s root yielded a new compound named 5-methylliridine (1) in addition to six previously identified compounds. These known compounds include liriodenine (2), 11-methoxyliriodenine (3), lysicamine (4), onychine (5), 5-hydroxy-6-methoxyonychine (6), and 8-methoxyeupolauridine (7). The structures of compounds 1-7 were determined through spectroscopic analysis. Liriodenine (2) exhibited a remarkable ability to decrease the cell viability of cancerous N2A cells to 22% within a 24 h timeframe, indicating its potential as an anti-neuroblastoma agent. Molecular docking results additionally suggested that oxoaporphines (1-4) have the potential to act as inhibitors of protein kinases. These findings highlight the therapeutic potential of P. bullata constituents in cancer treatment, particularly neuroblastoma, and contribute to understanding its medicinal properties.

 

Keywords: Anti-neuroblastoma; oxoaporphine; protein kinase; Polyalthia bullataKing; Tongkat Ali Hitam

 

Abstrak

Akar Polyalthia bullata King menghasilkan satu sebatian baharu yang dikenali sebagai 5-metilliridine (1) bersama dengan enam sebatian yang sebelum ini telah dikenal pasti. Sebatian yang telah dikenali ini termasuk liriodenine (2), 11-metoksiliriodenine (3), lysicamine (4), onychine (5), 5-hidroksi-6-metoksionychine (6) dan 8-metoksieupolauridine (7). Struktur bagi sebatian 1-7 telah ditentukan melalui analisis spektroskopi. Liriodenine (2) menunjukkan keupayaan yang luar biasa dalam mengurangkan sel kanser N2A kepada 22% dalam jangka masa 24 jam, memberikan petanda tentang potensi sebagai agen anti-neuroblastoma. Hasil daripada dok molekul turut mencadangkan bahawa oksoaporfina (1-4) mempunyai potensi untuk bertindak sebagai perencat protein kinase. Penemuan ini menonjolkan potensi terapeutik bahan aktif P. bullata dalam rawatan kanser, khususnya neuroblastoma, serta menyumbang kepada pemahaman tentang sifat perubatannya.

 

Kata kunci: Anti-neuroblastoma; oksoaporfina; Polyalthia bullataKing; protein kinase; Tongkat Ali Hitam

 

REFERENCES

Ahmad, F., Said, S.A., Chakravarthi, S., Norhidayah, A., Mohamed, B., Edros, R.Z. &  Vejayan, J. 2023. Comparison of three aphrodisiac plants (Eurycoma longifolia, Polyalthia bullata and Stema tuberosa) synonymous with Tongkat Ali. Tropical J. Nat. Prod. Res. 7(5): 3002-3008.

Alsailawi, H.A., Mudhafar, M., Hanan, A.H., Ayat, S.S., Dhahi, S.J., Ruaa, K.M. & Raheem Hussein, A. 2023. Phytochemical screening and antibacterial activities of Antiaris toxicaria stem, Polyalthia rumphii leaves and Polyalthia bullata stem extracts. AIP Conf. Proc. 2845(1): 020007.

Ang, H. & Lee, K. 2006. Contamination of mercury in tongkat Ali hitam herbal preparations. Food and Chemical Toxicology 44(8): 1245-1250.

Bahmad, H.F., Chamaa, F., Assi, S., Chalhoub, R.M., Abou-Antoun, T. & Abou-Kheir, W. 2019. Cancer stem cells in neuroblastoma: Expanding the therapeutic frontier. Front Mol. Neurosci. 12: 131.

Brenner, A.K. & Gunnes, M.W. 2021. Therapeutic targeting of the Anaplastic Lymphoma Kinase (ALK) in neuroblastoma-A comprehensive update. Pharmaceutics 13(9): 1427.

Chen, Y.C., Chia, Y.C. & Huang, B.M. 2021. Phytochemicals from Polyalthia species: Potential and implication on anti-oxidant, anti-inflammatory, anti-cancer, and chemoprevention activities. Molecules 26(17): 5369.

Chen, Z.F., Liu, Y.C., Huang, K.B. & Liang, H. 2013. Alkaloid-metal based anticancer agents. Current Topics in Medicinal Chemistry 13: 2104-2115.

Chen, Z.F., Liu, Y.C., Peng, Y., Hong, X., Wang, H.H., Zhang, M.M. & Liang, H. 2012. Synthesis, characterization, and in vitro antitumor properties of gold(III) compounds with the Traditional Chinese Medicine (TCM) active ingredient liriodenine. Journal of Biological Inorganic Chemistry 17: 247-261.

Connolly, J.D., Haque, M.E. & Kadir, A. 1996. Two 7, 7′-bisdehydroaporphine alkaloids from Polyalthia bullata. Phytochemistry 43(1): 295-297.

Del Grosso, F., De Mariano, M., Passoni, L., Luksch, R., Tonini, G.P. & Longo, L. 2011. Inhibition of N-linked glycosylation impairs ALK phosphorylation and disrupts pro-survival signaling in neuroblastoma cell lines. BMC Cancer 11: 525.

Din, L.B., Zakaria, Z., Abdullah, A. & Yamin, B.M. 2005. 8H-Benzo[g][1,3]benzodioxolo[6,5,4-de]quinolin-8-one (oxocrebanine). Acta Crystallographica Section E 61(5): o1450-o1452.

Faizi, S., Khan, R.A., Azher, S., Khan, S.A., Tauseef, S. & Ahmad, A. 2003. New antimicrobial alkaloids from the roots of Polyalthia longifolia var. pendula. Planta Medica 69(4): 350-355.

Fun, H.K., Sivakumar, K., Yip, B.C., Othman, A.H. & Said, I.M. 1996. -3,4-Dimethyl-2,5-bis(3,4,5-trimethoxyphenyl)tetrahydrofuran. Acta Crystallographica Section C 52(2): 414-416.

Gabarra-Niecko, V., Schaller, M.D. & Dunty, J.M. 2003. FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev. 22(4): 359-374.

Greengard, E.G. 2018. Molecularly targeted therapy for neuroblastoma. Children 5(10): 142.

Gross, S., Rahal, R., Stransky, N., Lengauer, C. & Hoeflich, K.P. 2015. Targeting cancer with kinase inhibitors. J. Clin. Invest. 125(5): 1780-1789.

Guinaudeau, H., Leboeuf, M. & Cavé, A. 1979. Aporphine alkaloids. II. Journal of Natural Products 42(4): 325-360.

Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y. & Mills, G.B. 2005. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4(12): 988-1004.

Huang, X., Hao, N., Wang, Q., Li, R., Zhang, G., Chen, G., Liu, S. & Che, Z. 2022. Non-food bioactive forest product liriodenine: Sources, chemistry, and bioactivities. Industrial Crops and Products 187(Part B): 115447.

Jänne, P.A., Gray, N. & Settleman, J. 2009. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat. Rev. Drug Discov. 8(9): 709-723.

Johnsen, J.I., Segerström, L., Orrego, A., Elfman, L., Henriksson, M., Kågedal, B., Eksborg, S., Sveinbjörnsson, B. & Kogner, P. 2008. Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 27(20): 2910-2922.

Kamarul Zaman, M.A., Azzeme, A.M., Ramle, I.K., Normanshah, N., Ramli, S.N., Shaharuddin, N.A., Ahmad, S. & Abdullah, S.N.A. 2020a. Induction, multiplication, and evaluation of antioxidant activity of Polyalthia bullata callus, a woody medicinal plant. Plants 9(12): 1772.

Kamarul Zaman, M.A., Azzeme, A.M., Ramli, S.N., Shaharuddin, N.A., Ahmad, S. & Abdullah, S.N.A. 2020b. Solvent extraction and its effect on phytochemical yield and antioxidant capacity of woody medicinal plant, Polyalthia bullata. BioResources 15(4): 9555-9568.

Katkar, K., Suthar, A. & Chauhan, V. 2010. The chemistry, pharmacologic, and therapeutic applications of Polyalthia longifolia. Pharmacognosy Reviews 4(7): 62-68.

Kennedy, P.T., Zannoupa, D., Son, M.H., Dahal, L.N. & Woolley, J.F. 2023. Neuroblastoma: An ongoing cold front for cancer immunotherapy. J. Immunother. Cancer 11(11): e007798.

London, W.B., Castleberry, R.P., Matthay, K.K., Look, A.T., Seeger, R.C., Shimada, H., Thorner, P., Brodeur, G., Maris, J.M., Reynolds, C.P. & Cohn, S.L. 2005. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group. J. Clin. Oncol. 23(27): 6459-6465.

Maris, J.M., Hogarty, M.D., Bagatell, R. & Cohn, S.L. 2007. Neuroblastoma. Lancet 369(9579): 2106-2120.

Megison, M.L., Gillory, L.A. & Beierle, E.A. 2013. Cell survival signaling in neuroblastoma. Anticancer Agents Med. Chem. 13(4): 563-575.

Mueller, D., Davis, R.A., Duffy, S., Avery, V.M., Camp, D. & Quinn, R.J. 2009. Antimalarial activity of azafluorenone alkaloids from the Australian tree Mitrephora diversifolia. J. Nat. Prod. 72(8): 1538-1540.

Nantapap, S., Punyanitya, S., Nuntasaen, N., Pompimon, W. & Meepowpan, P. 2017. Flavones from aerial parts of Polyalthia bullata and cytotoxicity against cancer cell lines. Chemistry of Natural Compounds 53(4): 762-763.

Paarakh, P.M. & Khosa, R. 2009. Phytoconstituents from the genus Polyalthia - A review. Journal of Pharmacy Research 2(4): 594-605.

Pan, E., Cao, S., Brodie, P.J., Callmander, M.W., Randrianaivo, R., Rakotonandrasana, S., Rakotobe, E., Rasamison, V.E., TenDyke, K., Shen, Y., Suh, E.M. & Kingston, D.G. 2011. Isolation and synthesis of antiproliferative eupolauridine alkaloids of Ambavia gerrardii from the Madagascar Dry Forest. J. Nat. Prod. 74(5): 1169-1174.

Panthama, N., Kanokmedhakul, S. & Kanokmedhakul, K. 2010. Polyacetylenes from the roots of Polyalthia debilis. Journal of Natural Products 73(8): 1366-1369.

Prachayasittikul, S., Manam, P., Chinworrungsee, M., Isarankura-Na-Ayudhya, C., Ruchirawat, S. & Prachayasittikul, V. 2009. Bioactive azafluorenone alkaloids from Polyalthia debilis (pierre) finet & Gagnep. Molecules 14(11): 4414-4424.

Sulaiman, M., Hamid, A.H.A. & Awang, K. 2003. Alkaloids and flavones from Desmos dumosus, Roxb. Saff. (annonaceae). Malaysian Journal of Science 22(1): 87-93.

Tekuri, S.K., Pasupuleti, S.K., Konala, K.K. & Pabbaraju, N. 2019. Pharmacological effects of Polyalthia cerasoides (Roxb.) Bedd.: A brief review. Journal of Complementary Medicine Research 10(1): 38-49.

Tsai, S.F. & Lee, S.S. 2010. Characterization of acetylcholinesterase inhibitory constituents from Annona glabra assisted by HPLC microfractionation. J. Nat. Prod. 73(10): 1632-1635.

Vishala, T.C., Hieu, H.V., Killari, K.N., Ranajit, S.K., Samanth, S., Polimati, H., Ketha, A., Annam, S.S.P., Nallapaty, S., Koneru, S.T. & Akula, A. 2021. A review on therapeutic benefits of active chemical moieties present in Polyalthia longifolia. Indian Journal of Pharmaceutical Sciences 83(4): 634-647.

Wang, H., Chen, X. & He, L. 2023. A narrative review of radiomics and deep learning advances in neuroblastoma: Updates and challenges. Pediatr. Radiol. 53(13): 2742-2755.

Wei, Y.B., Li, Y.X., Song, H. & Feng, X.J. 2014. Design, synthesis and anticancer activity of oxoaporphine alkaloid derivatives. J. Enzyme Inhib. Med. Chem. 29(5): 722-727.

Wiart, C., Mogana, S., Khalifah, S., Mahan, M., Ismail, S., Buckle, M., Narayana, A.K. & Sulaiman, M. 2004. Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia 75(1): 68-73.

Yao, L.J., Jalil, J., Attiq, A., Hui, C.C. & Zakaria, N.A. 2019. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). J. Ethnopharmacol. 229: 303-325.

Yoo, H.D., Cremin, P.A., Zeng, L., Garo, E., Williams, C.T., Lee, C.M., Goering, M.G., O'Neil-Johnson, M., Eldridge, G.R. & Hu, J.F. 2005. Suaveolindole, a new mass-limited antibacterial indolosesquiterpene from Greenwayodendron suaveolens obtained via high-throughput natural products chemistry methods. Journal of Natural Products 68(1): 122-124.

 

*Corresponding author; email: ymchoo@um.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous